

Ethanol in Petrol

FBHVC AGM

October 15th 2011

Steve McArragher

30 years + with Shell

1947 Rover 12

Matt Vincent

25 years with BP and Octel

1934 Frazer Nash

Presentation Overview

- Why is ethanol added to petrol?
- Effects of ethanol
 - Compatibility (Matt Vincent)
 - Corrosion
 - Driveability (Steve McArragher)
 - Combustion
- Solutions
- Summary

Ethanol in Petrol : Why?

- EU Directive : Renewable Fuels : CO₂ reduction
- Bio-Ethanol : renewable fuel source
- Currently used at up to 5% volume in petrol
- Expected to rise to 10% volume
- No labelling required at 5% volume level
- After 2013 no labelling up to 10% volume (maybe)

Effects of Ethanol in Petrol

- Ethanol is a bit of a mixed blessing:
 - Increases octane quality - potentially useful
 - Can adversely affect a range of materials - bad
 - Can lead to fuel system corrosion in storage - bad
 - Affects volatility of petrol blend - not helpful
 - Results in leaner fuel-air mixture - possibly not helpful

Ethanol : FBHVC Involvement, Activities

- Reacted to letters, communications, etc.
- Involved in DfT Stakeholder Meetings
 - presented Members complaints
 - questioned “nothing much to worry about” stance
 - established nature of concerns/threats to Members
- Supplied Qinetiq with information used in their influential ethanol report
 - led to some reconsideration of 10% ethanol by DfT
- Identified risk of corrosion : proposed solution
- Arranged additive tests : endorsement scheme

Ethanol in Petrol

Compatibility Issues

CONCAWE Compatibility Table

Table 1

Recommendations for Materials Considered for Use in Ethanol and Ethanol/Gasoline Blend Applications [3]

Material	Recommended	Not Recommended
Metals	Carbon steel with post-weld heat treatment of carbon steel piping and internal lining of carbon steel tanks ² Stainless steel Bronze Aluminium	Zinc and galvanized materials Brass Copper Lead/tin coated steel Aluminium (may be an issue for E100)
Elastomers	Buna-N (hoses & gaskets) Fluorel Fluorosilicone Neoprene (hoses & gaskets) Polysulfide rubber Viton	Buna-N (seals only) Neoprene (seals only) Urethane rubber Acrylonitrile-butadiene hoses Polybutene terephthalate
Polymers	Acetal Polypropylene Polyethylene Teflon Fibreglass-reinforced plastic	Polyurethane Polymers containing alcohol groups (such as alcohol based pipe dope) Nylon 66 Fibreglass-reinforced polyester and epoxy resins Shellac
Others	Paper Leather	Cork

Compatibility

- Realities of compatibility problems:
 - elastomers and plastics may swell, shrink, leak
 - seals may not live up to their name
- Most common complaints: tank sealing failures
 - Consequential effects : leaks, blocked carburetors, fuel starvation, weak mixtures, engine damage
- Unfortunately there is no quick fix/additive solution
 - replace non-compatible materials with compatible
 - preventative measures: replace tank sealing materials : replace tank (extreme case)

Ethanol in Petrol

Potential Corrosion Issues

Bio-Ethanol :Acidic Corrosion

- Ethanol in storage tends to degrade : pH falls
- pH ideally about 7 : low pH : acid, high pH : alkaline
- Special additive needed to protect against acid formation in storage (falling pH)
- Fuel-grade ethanol is usually treated at source
- No guarantee that this will happen
- Ideally an after market treatment should be used
- Add to the petrol during refuelling : protects fuel system

Corrosion Inhibitor Testing

- Potential additive solution available
- Technology from USA where use is mandatory
- FBHVC proposes 'Test and Endorsement' policy
- Test protocol uses accelerated aging method
 - one week storage = one month in real world
 - 13 week storage = 12 months in real world
- Industry-recognised corrosion test every two weeks to monitor additive performance
- High performance level required for FBHVC endorsement

Corrosion Testing

- NACE test protocol
- Polished steel probes
- Water and fuel : spinning probes
- Visual inspection to rate probes

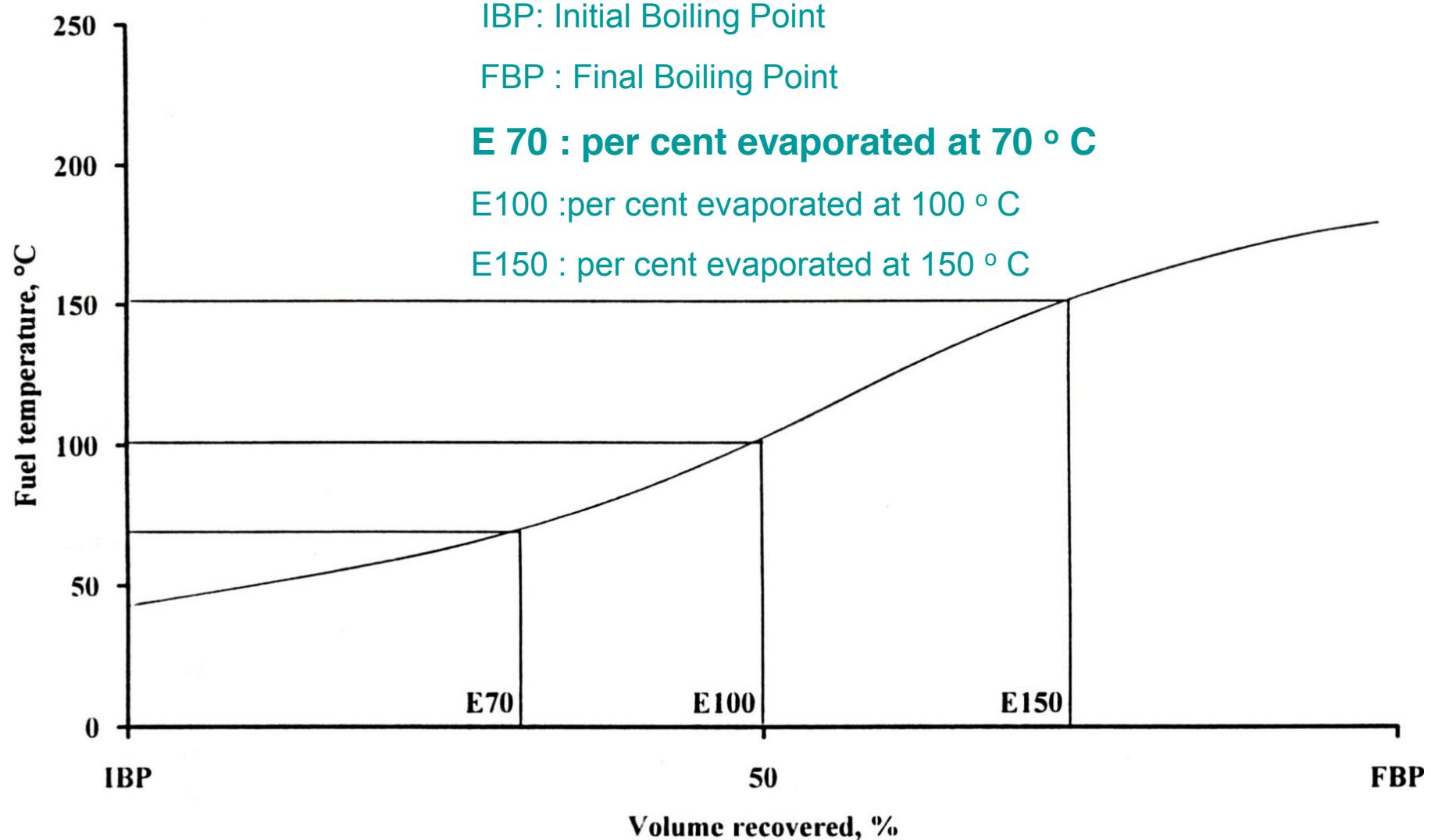
- Base fuel : no additive
- E rating on NACE scale
- With additive, A rating (clean-no rust) or B++ (six spots max) for FBHVC endorsement
- Standard maintained over 13 weeks (equiv. to 12 months)

Status Report

- Tests started in early July 2011
- Aim : complete by mid October : results for AGM
- But “.... best laid plans of mice and men.....”
- Part-way through the 13 week test sequence
 - contamination in test bath found to have influenced results
 - tests abandoned : equipment stripped and cleaned
 - programme restarted late September : results end 2011
- However, enhanced confidence in data : additive performance assessment

Ethanol in Petrol

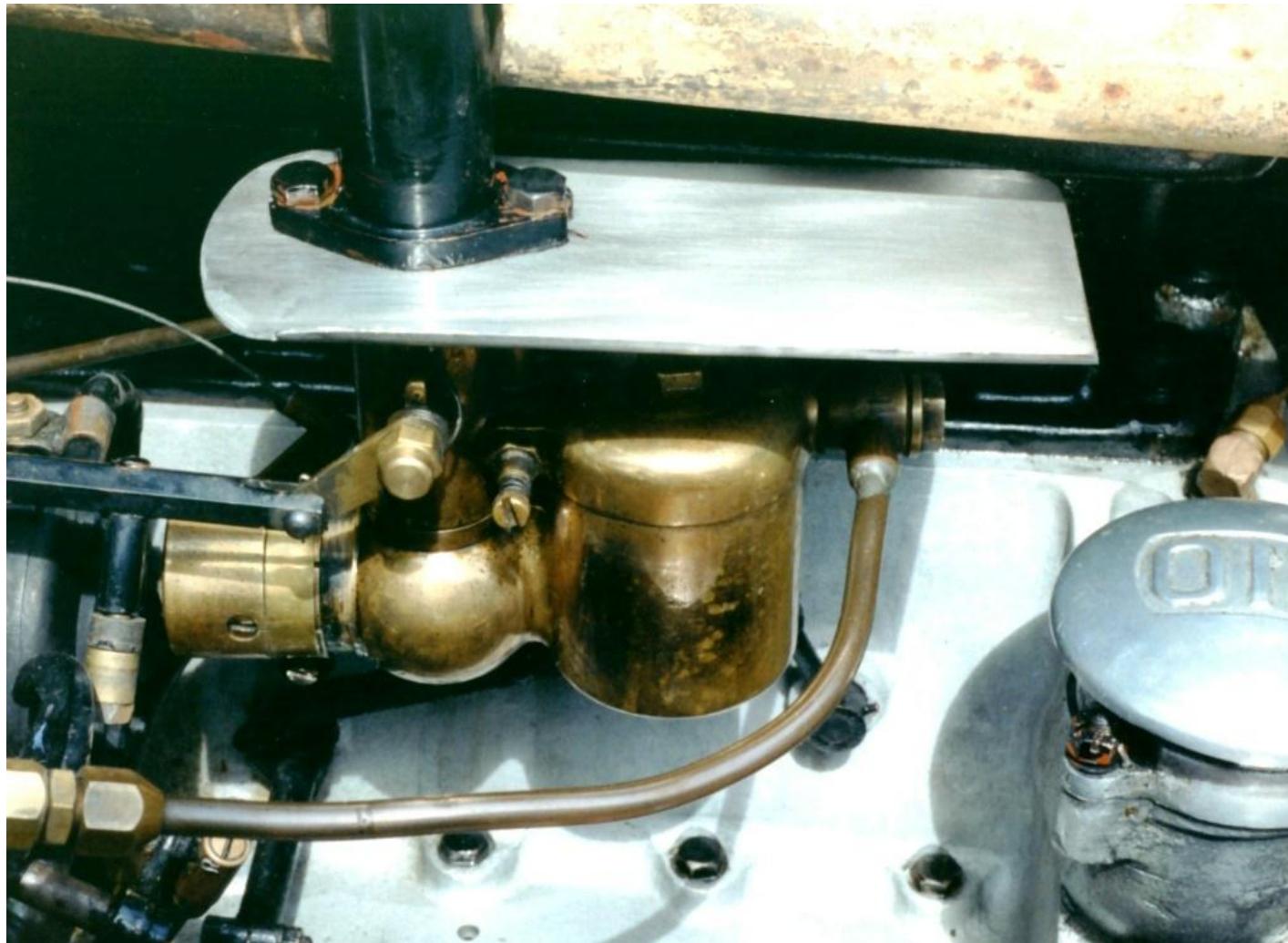
Driveability and
Combustion


Steve McArragher

Volatility : Boiling Characteristics

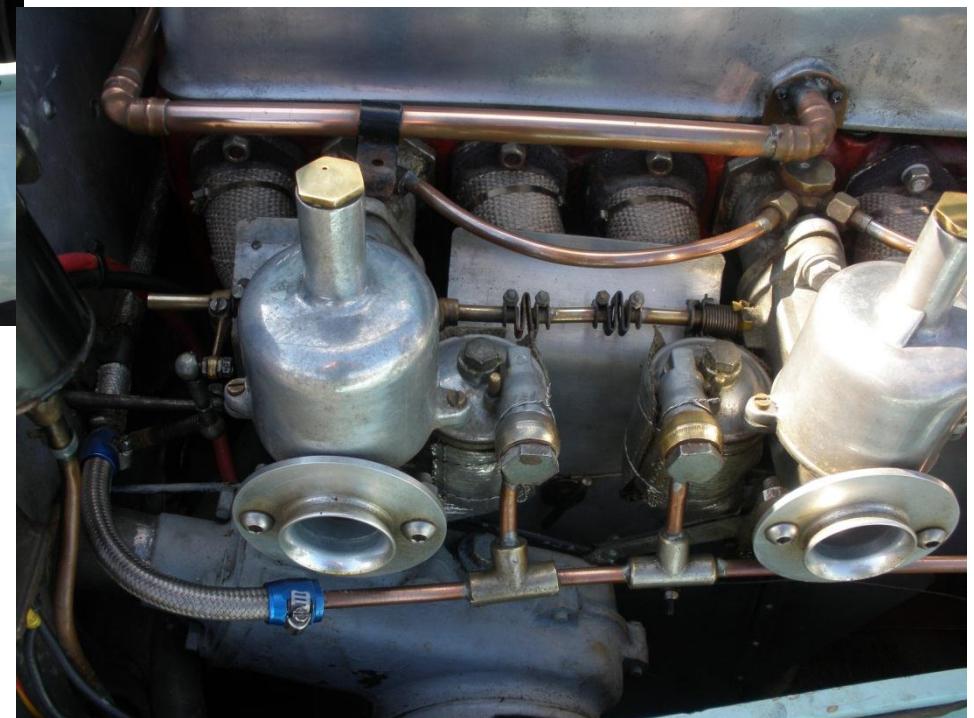
- Pure substances : single component
e.g. H_2O
- Single fixed boiling point : making tea with water at 100 °C
- Petrol : 200 different molecules
- No single boiling temperature
- At any temperature between about 35 °C and about 195 °C boiling is observed in liquid petrol
- Ethanol in petrol affects volatility characteristics

Petrol Volatility Curve



Steve McArragher

Driveability and Combustion


- Materials compatibility
 - Replace problem materials with compatible products
 - FBHVC newsletter (No 5 2010) lists materials
- Corrosion:
 - Ideally an after market treatment should be used
 - Add during refuelling : protects fuel system
- Combustion/Driveability effects:
 - Mixture leaning from ethanol (1.8-3.6%) : adjust fuelling if possible or
 - Air/fuel ratio changes may cause driveability problems and increase exhaust temperature
 - Adopt measures to restrict heat transfer to carburettors
 - Baffles, pipe routing, thermal blocks and breaks

- Need to reduce (exhaust) heat flow to liquid fuel
- Fuel line routing away from heat sources
- Pump location away from heat source
- Carburettor shielding from exhaust heat
- Often simple modifications are effective
- Changes need not alter vehicle character
- Baffles and heat shields can be fitted sympathetically

Heat Shield - II

Presentation to FBHVC AGM

Thank you for your attention